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A level set approach for computing solutions to inviscid
compressible flow with moving solid boundary using

fixed Cartesian grids
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SUMMARY

A level set approach for computing solutions to inviscid compressible flow with moving solid surface is
presented. The solid surface is considered to be sharp and is described as the zero level set of a smooth
explicit function of space and time. The finite volume TVD–MacCormack’s two-step procedure is used.
The boundary conditions on the solid surface are easily implemented by defining the smooth level set
function. The present treatment of the level set method allows the handling of fluid flows in the presence
of irregularly shaped solid boundaries, escaping from the bookkeeping complexity in the so-called
‘surface-tracking’ method. Using the proposed numerical techniques, a two-dimensional numerical
simulation is made to investigate the aerodynamic phenomena induced by two high-speed trains passing
by each other in a tunnel. Copyright © 2001 John Wiley & Sons, Ltd.
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1. INTRODUCTION

A numerical method is developed for computing the motion of inviscid compressible flow
embedded with complex-shaped solid surfaces. Instead of explicitly tracking the solid
boundary on a fixed Cartesian grid, the author intends to implicitly ‘capture’ the boundary
using a level set approach. The boundary will be identified as the zero level set of a smooth
function.

Over the years, the challenges posed by fluid flow problems involving moving solid
boundaries have resulted in some computational techniques directed toward their solution.
Numerical methods applied to such problems are required to follow the arbitrary motion of
the complex boundary shapes. A chimera grid embedding technique has been proposed by
Benek [1,2], where a boundary-fitted structured grid is constructed closely around the solid
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boundary and is overlapped with an outer structured grid. The inner grid always follows the
solid-body motion and communicates with the fixed outer grid in the overlapped region. Such
a boundary conforming grid arrangement is convenient and accurate; the solid boundary is
always maintained and boundary conditions are applied at the exact locations without any
smearing or redistribution. The chimera method has been employed in a wide variety of
applications: wing–body– tail configurations [2], general viscous flows [3], weapon separation
off of a wing [4], flow field around F-18 aircraft [5], flow field of space shuttle orbiter vertical
tail [6], numerical simulation of a tilting disk heart valve [7], and environmental flow problems
[8]. The method has been adapted for solutions of Reynolds-averaged Navier–Stokes equa-
tions for three-dimensional incompressible flows by Chen et al. [9].

The methods based on single fixed Cartesian grids have also been found in some literature.
One major limitation of these methods is that complex flow geometries are difficult to
incorporate. The representation of a solid boundary on a fixed Cartesian grid layout calls for
special treatment, since the control volumes through which the irregular boundary passes
become fragmented in solid and liquid regions. Quirk [10] detailed some of the procedures
involved in dealing with cell fragments or cut cells in the framework of compressible inviscid
flows around stationary obstacles. However, the calculation of fluxes is not presented in detail
in that work. Also, in connection with compressible inviscid flows, Pember et al. [11] used local
refinement and a redistribution procedure to enforce conservation in the vicinity of the
solid– fluid boundary. Arbitrary-shaped boundaries moving through a Cartesian mesh have
also been dealt with using finite element methods by Young et al. [12]. In Zeeuw and Powell
[13] and Bayyuk et al. [14], a Cartesian grid is employed to track the motion of solid objects
through an inviscid compressible fluid. Among others, a distinct branch has been started since
the works of Viecelli [15,16] in which a shear-free surface is modeled in a marker and cell
technique. The pressure along some desired boundary is used to enforce the no-through flow
condition; if fluid flows through the boundary, the pressure is increased on the boundary until
the through flow ceases. Along this line, Goldstein et al. [17,18] have employed a modified
immersed boundary technique (Peskin [19,20]) to impose no-slip boundary conditions over
arbitrary-shaped solid boundaries via a feedback external concentrated force field. Turbulent
flows around solid obstacles have been calculated using this approach and the results have
been shown to compare favorably with experiments. However, the gains of feedback control
must be chosen carefully and manually in an unsteady flow problem. The method, as used in
these works, treats the solid boundary as a series of steps conforming with the Cartesian grid
layout, i.e., in piecewise constant fashion. In a finite volume setting, Udaykumar and Shyy
[21,22] used a cut-cell technique to compute incompressible viscous flows in arbitrary ge-
ometries. In their works, it was demonstrated that by means of a suitably defined consistent
mosaic of control volumes, it is possible to obtain accurate solutions for flows on Cartesian
meshes.

All of the aforementioned methods cannot avoid the problem of bookkeeping for capturing
the moving solid boundary. Recently, a new set of algorithms for following propagating
interfaces has been developed. A Hamilton–Jacobi level set formulation for moving interfaces
was introduced (Osher and Sethian [23]). These algorithms handle topological merging and
breaking naturally, work in any number of space dimensions, and do not require that the
moving front be written as a function. Instead, the moving front is embedded as a particular
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level set in a fixed domain partial differential equation. Numerical techniques borrowed from
hyperbolic conservation laws are then used to accurately calculate the correct solution that
satisfies the global entropy condition for propagating fronts given in Sethian [24]. These
schemes have been used to model a variety of problems in front motion [23], flame propaga-
tion [24], the geometry of moving surfaces [25], detonation shock [26], and vortex motion
modeling [27]. Following the introduction of this level set formulation for moving fronts, it has
also been used for theoretical analysis of motion by mean curvature [28,29] and for construct-
ing minimal surfaces [30]. For an overview of level set methods, refer to References [31,32].

In this paper, the author adopts the notion of level set function to implicitly capture the
moving solid boundary and impose the required boundary conditions for computing two-
dimensional inviscid compressible flows. The idea is proved amenable by a self-justifying
example, i.e., impulsively starting subsonic flow over a circular cylinder. Then it is applied to
simulate a transient flow field induced by two high-speed trains passing by each other in a
tunnel.

2. GOVERNING EQUATIONS

Considering the unit length of the solid boundary, far-field density ��, far-field velocity u�,
and ��u�

2 being the reference quantities for length, density, velocity, and pressure respectively,
the two-dimensional non-dimensional integral form of the conservation law for an inviscid
compressible flow can be written as

�

�t �
���

U dV+
�

S

� ·dS=0 (1)

where V is the domain considered and S is the boundary of V. The conservative variable vector
U and the flux vectors F and G in the flux �=Fib +Gjb are defined as
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where E=e+ [(u2+�2)/2] is the total energy per unit mass, e is the internal energy per unit
mass, and H=h+ [(u2+�2)/2]=E+ (p/�) is the total enthalpy per unit mass. The thermody-
namic equation of state of a perfect gas, p= (�−1)�e with �=1.402, is used to close these
conservative equations. i� (j� ) are the unit vectors directed toward the positive x (y) co-ordinate
axis.

The boundary conditions for the computational domain are demonstrated as follows:

1. At a solid wall boundary, the relative normal velocity is zero. Hence, only one eigenvalue
of the system of Euler equations is positive and only one physical condition can be
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imposed, namely (u−v) ·n=0, where u is the velocity of fluid and v and n are the velocity
vector and the unit normal vector of the solid boundary respectively. The other variables
at the wall, in particular velocity and pressure, have to be determined by extrapolation
from the interior to the boundary. In this work, because the focus of interest is to develop
a whole numerical procedure, a zero-order extrapolation along the normal direction is used
for simplicity. It is equivalent to �p/�n=0 and ��t/�n=0, where �t denotes the relative
tangential velocity. Then, for density, ��/�n=0 from the assumption of adiabatic walls.

2. On the far-field boundary, the one-dimensional Riemann invariants method is locally
applied to ensure the non-reflection of unphysical waves [33].

3. NUMERICAL METHOD

3.1. TVD–MacCormack scheme

In a finite volume setting, Equation (1) is solved by the MacCormack’s two-step procedure
[34], which reads, for the predictor of the forward– forward version

predictor:

Ui, j
p =Ui, j

n −�(Fi+1, j
n ·Si+1/2+Fi, j

n ·Si−1/2+Gi, j+1
n ·Sj+1/2+Gi, j

n ·Sj−1/2 (3)

corrector:

Ui, j
c =Ui, j

n −�(Fi, j
p ·Si+1/2+Fi−1, j

p ·Si−1/2+Gi, j
p ·Sj+1/2+Gi, j−1

p ·Sj−1/2 (4)

a�erage:

Ui, j
n+1=

1
2

(Ui, j
p +Ui, j

c ) (5)

where �=�t/h2 and h is the mesh size of the finite volume cell. The implementation, in
practice, is to alternate forward/backward difference for the predictor in two co-ordinate
directions, thus four combinations are completed in four time steps. Further, the order of
combination is reversed in the next four time steps to make the solution as smooth as possible.
Finally, eight time steps constitute one cycle of combination.

To render the solution oscillation-free and retain second-order accuracy in space and time
almost everywhere (except at extrema points), a total variation diminishing (TVD) dissipation
flux with Roe-average cell-face variable and ‘minmod’ limiter is added into the scheme [35].

As to the boundary conditions, they are easily implemented with the aid of one more layer
of phantom cells at the far-field and fixed-wall boundaries. The remaining problem is how to
apply the wall boundary conditions at the irregularly shaped moving solid boundary on a
Cartesian grid layout. The approach is demonstrated and discussed in the next subsections.
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3.2. Le�el set function

Before proceeding to its applications in this work, the theories and characteristics related to the
level set function are introduced first. Consider a boundary, either a curve in two dimensions
or a surface in three dimensions, separating one region from another, and imagine that this
curve/surface moves in its normal direction with a known speed function F. The goal is to
track the motion of this interface as it evolves. The motion of the interface in its normal
direction is the only concern, and the tangential motion will be ignored. This speed F can
depend on the local properties of the interface, such as curvature and normal direction, or the
global properties of the interface, such as integrals along it and associated differential
equations, or the independent properties, such as an underlying fluid velocity, which passively
transports the interface.

Now the level set formulation is derived. Given an initial position for an interface �, where
� is a closed curve in R2, and a speed function F, which gives the speed of � in its normal
direction, the level set method takes the perspective of viewing � as the zero level set of a
function �(r, t=0) from R2 to R. That is, let �(r, t=0)= �d, where d is the distance from
r to �, and the plus (minus) sign is chosen if the point r is outside (inside) the initial
hypersurface �. Then, by the chain rule, an evolution equation for the interface may be
produced, namely

�t+F ��� �=0 (6)

�(r, t=0)=given (7)

This is an initial value partial differential equation in one higher dimension than the original
problem. There are several advantages to this level set perspective:

1. A discrete grid can be used together with a finite volume to devise a numerical scheme to
approximate the solution.

2. Intrinsic geometric properties of the interface are easily determined from the level set
function �. For example, the normal vector is given by n=��/��� �.

3. The formulation is unchanged for propagating interfaces in three dimensions.

Turning to the work in this paper, the solid boundary is regarded as the interface separating
the solid region and the fluid one. Then, the speed function F depends on the normal direction
and is defined as

F=v ·n (8)

This definition can be extended off the solid boundary by defining the normal vector N as the
local one at a point r in the domain determined by the particular level set passing through that
point and constructing the velocity field V satisfying the rigid-body motion of the object, that
is

N=��/��� � (9)
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V=Vc+�×r� (10)

where Vc denotes the solid-body translational velocity, � the solid-body rotational angular
velocity, and r� the displacement of x from the center of solid-body rotation. Thus, the domain
of definition has been enlarged and

F=V ·N (11)

Meanwhile, Equations (6) and (7) can now be satisfied by the solution

�(r, t)=�0(r*(t)) (12)

where

�0(r)��(r, 0) (13)

r*(t)=�−1(t)[r−rc(t)] (14)

�(t)=
�cos �(t) −sin �(t)

sin �(t) cos �(t)
n

(15)

rc(t)=
� t

0

Vc(�) d� (16)

�(t)=
� t

0

�(�) d� (17)

Note that �0(r) needs not to be a distance function as usual because the information of
distance has no use in the present approach as seen in the next subsection. Nevertheless, the
important characteristics (9) still holds.

Equations (12)– (17) mean that the evolution of the level set function is fully governed by the
rigid-body motion, i.e., unlike the case of free surface flows, the speed function F is
independent of u and p. This property makes it possible to trace back the level set field at any
instant to the initial level set field along the trajectory of rigid-body motion (see Equation
(12)). If �0 is an analytical function, so is � and one can save lot of computational time from
solving the evolutionary equation (6). If �0 is given only at discrete points, then it must be
determined by interpolation.

3.3. Boundary conditions on the solid– fluid interface

By exploiting the level set function, an approach has been proposed to implement the
boundary conditions on the solid– fluid interface. At first, the finite volume cells are sorted
into four categories according to the value of the level set function at the node itself and its
immediate four neighbors (Figure 1):
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Figure 1. Four types of cells classified by the value of � at the node and its four immediate neighbors.

(i) internal cell if �i, j�0 and (�i�1, j�0 and �i, j�1�0)
(ii) internal surface cell if �i, j�0 and (�i−1, j�0 or �i+1, j�0 or �i, j−1�0 or �i, j+1�0)

(iii) outer surface cell if �i, j�0 and (�i−1, j�0 or �i+1, j�0 or �i, j−1�0 or �i, j+1�0)
(iv) outer cell if �i, j�0 and (�i�1, j�0 and �i, j�1�0)

In the fluid region (�i, j�0), there is a problem in updating the flow variables for the outer
cells which are one or two mesh sizes away from the internal surface cells. That is, the flow
variables are needed at these internal surface cells to close the algebraic equation system that
resulted from applying the flow solver mentioned above. The strategy of determining these
flow variables is stated as follows (see Figure 2):

1. For each internal surface cell centered at C, calculate �� using the central difference
scheme, then the unit normal vector n=��/��� �. Meanwhile, the shape of the solid
boundary crossing point C is classified and point 1 is defined according to Figure 2.

Figure 2. Various cases of solid boundary crossing through the mesh cells.
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2. Point 2, an outer cell that has the largest � except point 1, is then determined. The
implication of such a choice is that the normal vector will cross through between points 1
and 2.

3. Then point m is found. For Case I, it is just the center of the neighboring outer surface cell;
for the other cases, it is the intersection of the normal line with the line connecting points
1 and 2.

4. The flow variables (p, �, and tangential velocity) at the internal surface cell C are set as
those at point m. Except for Case I, they are linearly interpolated from points 1 and 2. If
f represents any flow variable, then

fm= f1+r( f2− f1) (18)

where

r=
���x/�y �c if y1=y2

��y/�x �c if x1=x2

for Cases II and III (19)

r=
�1/(1+ ��y/�x �c) if x1=xc

1/(1+ ��x/�y �c) if y1=yc

for Cases IV, V, and VI (20)

5. The normal velocity at C is obtained from the no-through flow relation (u−v) ·n=0.

Note that the information at the internal cells is not needed and the TVD dissipation in some
co-ordinate direction is included for the outer surface cell computation only if all the
neighboring cell information in that direction is available.

3.4. Summary

The algorithm can now be summarized.

Step 1. Initialize a smooth function �(r, 0), which has a zero value on the solid
boundary.
Set up the boundary conditions on the far-field, fixed-wall, and the embeddedStep 2.
solid– fluid interface.

Step 3. Update the conservative flow variables using the TVD–MacCormack scheme.
Construct a new smooth function � (n+1) by Equations (12)– (17).Step 4.
Now one time step is advanced. The zero level set of � (n+1) gives the newStep 5.
solid-boundary position.

Step 6. Repeat Steps 2–5 until the required time.

Because the solid boundary crosses through the meshes irregularly, the upper bound of
the time step for numerical stability is much less than that obtained from the conventional
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Courant–Friedrich–Lewy (CFL) condition. For the time being, the time step is chosen
manually by trial and error.

4. NUMERICAL RESULTS

4.1. Impulsi�ely starting subsonic flow o�er a circular cylinder

This is a case used to test the applicability of the present level set approach. The far upstream
Mach number is 0.405 and the reference length for non-dimensionalization is the radius of the
cylinder. Firstly, as a base for comparison with the fixed Cartesian grid approach, the O-type
body-fitted grid is used to solve this problem. The instantaneous non-dimensional pressure
contour at non-dimensional time t=1 is shown in Figure 3. Further, the effect of grid
refinement is investigated by comparing the pressure distribution on the surface of the circular
cylinder for each grid (Figure 4). It can be concluded that the convergent solution has been
almost reached for the finest grid resolution (96 radial grids×128 circumferential grids). In all
of the above calculations, �t=5×10−4.

Figure 3. Instantaneous pressure contour at t=1 for flow over a circular cylinder using the body-fitted
grid approach (grid resolution=96×128).
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Figure 4. Pressure distribution on the surface of the circular cylinder at t=1 using the body-fitted grid
approach. Also shown is the grid refinement effect.

Secondly, the level set approach using fixed uniform Cartesian grids is used to solve the
same physical problem. The cylinder moves with Vc= i and �=0 in a quiet ambience, and
from Equations (12)– (17), its moving boundary can be represented by the zero level set of a
smooth function

�(x, y, t)=�(x− t)2+y2−1 (21)

The �t used in these calculations are 5×10−4 for 64×64 mesh, 2×10−4 for 128×128 mesh,
and 1×10−4 (t�0.1) then 5×10−4 for 192×192 and 256×256 meshes. Similarly, the
instantaneous pressure contour at t=1 is shown in Figure 5. The effect of grid refinement is
shown in Figure 6. It can be said that the mesh with 256×256 cells will meet the requirement
of convergence well enough. The cragginess in these curves reflects the inherent nature
pertaining to this Cartesian grid approach. During the motion, in general, a finite volume cell
will experience different categories defined in Figure 1, and the case of solid boundary crossing
through the mesh cells would change correspondingly (Figure 2). This case switching causes
the change of interpolated point-pair, point 1 and 2, hence the small oscillation observed in
Figure 6.

The two approaches are compared in Figure 7 for their finest grids. They fit in with each
other except the roughness of mesh size scale. In practice, almost the whole solution domain
has not been polluted by this grid-scale oscillation, as can be seen in Figure 5. As another
rigorous check, the unsteady pressure at four locations on the surface is plotted in Figure 8 for
these two approaches. It is seen that, immediately after the starting peak, they agree very well
except at �= �90°. The large pressure gradient near these sites, as seen in Figure 5, makes the
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Figure 5. Instantaneous pressure contour at t=1 for flow over a circular cylinder using the fixed
Cartesian grid level set approach (grid resolution=256×256).

interpolation error more severe, hence explains the slight deviation between the two
approaches.

4.2. Two trains passing by each other in a tunnel

As a preliminary application, the flow field induced by two high speed trains passing by each
other in a tunnel is calculated using the present level set approach. The problem definition and
the computational domain are illustrated in Figure 9. Two trains have the same shape and
move at the same speed of Mach number 0.283 (350 km h−1). In this work, the half-length and
the half-width of the train body, L and W respectively, are set at 12 and 1.5 m respectively and
a semi-circle is substituted for the actual head/tail profile of the train.

The flow field where the same trains pass by each other at the same speed is point symmetric
about the center point, i.e.

�
�
�
�
�

�

�u
��

�E

�
�
�
�
�r�

=

�
�
�
�
�

�

−�u
−��

�E

�
�
�
�
�r

(22)
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Figure 6. Pressure distribution on the surface of the circular cylinder at t=1 using the fixed Cartesian
grid level set approach. Also shown is the grid refinement effect.

where r� is the point of point symmetry of r as shown in Figure 9. Only the velocities u and
� are anti-symmetric. The computation is done with this boundary condition. Only the negative
y flow field is solved and both the grid points and the CPU time are reduced.

To reduce the compressive pressure wave induced by impulsive starting, the trains are
located far away from each other at the beginning and moves at the velocity of Vc=0.02t i for
0� t�50 and Vc= i for 50� t. In this work, the center of the train body (xc, yc) is initially
(−55, −2.25).

The train surface boundary can be represented by the zero level set of a smooth function,
i.e.

�(x, y, t)=
��[x− (xc�L)]2+ (y−yc)2−W if � (x−xc)�L

� (y−yc)−W if �x−xc��L and � (y−yc)�0

(23)

where xc= −55+0.01t2 for 0� t�50, xc= t−80 for 50� t, and yc= −2.25. A total of
2000×80 cells is used and �t=0.01 for most of the computational stage and a smaller value
during the time immediately after the beginning.
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Figure 7. Comparison between the fixed Cartesian grid and the body-fitted grid approach.

Figure 10 shows the pressure contour plots at a series of consecutive instants. It can be
seen that very complex unsteady flow fields occur in this problem. Four locations on the
train surface are chosen for quantitative investigation as shown in Figure 9. The history of
pressure at these locations is recorded and plotted versus the distance between two front
noses of train (Figure 11). Near the train noses (point A and B), the surface boundary
curve is more or less perpendicular to the velocity of motion, thus causes frequent case
switching aforementioned in the circular cylinder example. At the outer side (point C) or
the meeting side (point D), there is no such switching during the whole computational
period. In Figure 11, this numerical aspect is clearly illustrated by the corresponding small-
oscillation or smooth curves. The three vertical dotted lines denote the times when the front
noses meet each other, the front nose meets the rear nose of the other train, and the rear
noses meet each other respectively. Except for the outer side location, obviously, there is a
period of low pressure while the recording location comes to face to the train on the other
track. The response at the outer side location is very complicated and the recovery to a
steady condition seems to need more time than the other locations.
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Figure 8. Comparison of pressure history at four locations on the cylinder surface between the
body-fitted grid and the fixed Cartesian grid approach.

Figure 9. Problem definition and computational domain for two trains passing by each other in a tunnel.
A, B, C, and D denote the four locations to record the pressure history.

5. DISCUSSIONS AND CONCLUSIONS

In this paper, the solutions to two-dimensional inviscid compressible flow with moving solid
boundary is calculated using a novel level set approach where the level set function needs not
to be a distance function, but is limited to an explicit function of spatial position to avoid
solving the evolutionary equation. In real applications, this limitation could be of little
significance if a general solid boundary can be approximated by some superposition of
analytical geometric shapes.
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Figure 10. Time sequence of pressure contour for two trains passing by each other in a tunnel.
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Figure 11. Pressure history at four locations on the train body surface. Location A, B, C, and D are
defined in Figure 9.

The idea is proved applicable by the test case of a subsonic flow over a circular cylinder. The
simulation of a transient flow field induced by two high-speed trains passing by each other in
a tunnel illustrates that the present method can capture the complex unsteady phenomenon.

In principle, the notion behind the present approach can be applied in a general non-orthog-
onal grid layout. That work is under way along with the extension to three-dimensional space.
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